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Abstract. Object counting is a challenging task with broad application
prospects in security surveillance, traffic management, and disease diag-
nosis. Existing object counting methods face a tri-fold challenge: achiev-
ing superior performance, maintaining high generalizability, and mini-
mizing annotation costs. We develop a novel training-free class-agnostic
object counter, TFCounter, which is prompt-context-aware via the cas-
cade of the essential elements in large-scale foundation models. This ap-
proach employs an iterative counting framework with a dual prompt
system to recognize a broader spectrum of objects varying in shape, ap-
pearance, and size. Besides, it introduces an innovative context-aware
similarity module incorporating background context to enhance accu-
racy within messy scenes. To demonstrate cross-domain generalizability,
we collect a novel counting dataset named BIKE-1000, including exclu-
sive 1000 images of shared bicycles from Meituan. Extensive experiments
on FSC-147, CARPK, and BIKE-1000 datasets demonstrate that TF-
Counter outperforms existing leading training-free methods and exhibits
competitive results compared to trained counterparts. Our code is avail-
able at https://github.com/tfcounter/TFCounter
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1 Introduction

Object counting, the task of estimating the number of specific objects within an
image, plays a crucial role in various domains, including crowd counting [1, 10,
11,14,21,28,31,38,41,42] for urban planning and security, vehicle counting [5,18]
for traffic management, and cell counting [3, 29,32,33] in medical applications.

Traditional object-counting approaches are class-specific, counting objects
belonging to predefined categories such as humans, cars, or cells. Typically
grounded in CNN architectures, these methods require extensively annotated
datasets. While exhibiting remarkable accuracy in dealing with trained cate-
gories, these methods fail to maintain their performance when counting novel
classes during testing. To address this limitation, recent researches [16, 24–26,
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30, 39] have shifted towards class-agnostic object counting. They usually ex-
tract features from chosen exemplars and the query image to create a similarity
map, which generates a density map to infer object count. This methodology
, exemplified in [30], allows for dynamic adaptation to arbitrary object classes,
significantly broadening the scope and utility of object counting in computer
vision.

Recent progress in class-agnostic object counting has been directed towards
two main objectives: improving the similarity map and minimizing labor annota-
tions, including object points and bounding boxes, during testing and training.
(i) Numerous approaches [25, 26, 30, 39, 40] have crafted specialized similarity
module structures that primarily analyze foreground features. However, they
tend to overlook background details, potentially compromising the precision of
object counting. (ii) Simultaneously, certain zero-shot models [2, 7, 8, 35] utilize
text prompts to identify object categories or count repeating classes in images,
thus circumventing the requirement for box annotations in the testing phase.
Yet, these models still require intensive dot annotations for each object during
training, a challenging task in images with dense object clusters and frequent oc-
clusions. (iii) Additionally, the rapid advancement in large-scale foundation mod-
els [4,9,15,20,22], renowned for exceptional zero-shot generalization capabilities
and flexibility in secondary development, has boosted interest in training-free
approaches. A typical instance is the aligned text-image encoder in CLIP [22],
proving its adaptability across a wide range of downstream tasks [6, 34, 36, 37],
achievable through parameter freezing or fine-tuning. Leveraging these founda-
tion models, some methods [15,27] can perform training-free object counting by
directly processing the output results or innovative structural designs, as shown
in 1. Nevertheless, these methods often trade-off between high performance and
broad generalizability.

Driven by this analysis, we introduce TFCounter, as shown in Figure 2,
a novel training-free class-agnostic object counter, which is prompt-context-
aware via the cascade of the essential elements in large-scale foundation models.
This approach performs a multi-round counting strategy that utilizes posterior
knowledge to broaden the recall scope. Subsequently, it introduces an innovative
context-aware similarity module incorporating background context to enhance
accuracy. Moreover, it uses two types of point prompts, matrix point prompt
and residual point prompt, with the latter specifically designed to capture small
objects that are often missed. This dual prompt system ensures comprehensive
object detection across various sizes. Finally, to validate the effectiveness and
generalizability of TFCounter, we introduce an exclusive dataset named BIKE-
1000, comprising 1000 images of shared bicycles from Meituan. Experimental
results show that TFCounter outperforms existing state-of-the-art training-free
models on two standard counting benchmarks, and even displays competitive
performance when compared with trained models. In short, our contributions
can be summarized as follows:
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Fig. 1: Integrating task-specific frameworks with generalizable components from large-
scale foundation models can achieve training-free class-agnostic object counting by
detailed structural design.

– We introduce TFCounter, a novel training-free class-agnostic object counter,
prompt-context-aware via the cascade of the essential elements in large-scale
foundation models.

– We propose a context-aware similarity module for improved precision and an
iterative counting framework with a dual prompt system for broader recall.

– We present a novel exclusive dataset named BIKE-1000 for object counting,
which validates the superior performance of TFCounter.

2 Related Works

Improved similarity map approaches have attracted significant interest in
class-agnostic object counting. Several models strived to generate high-quality
similarity maps for refined count inference. FamNet+ [25] introduced a novel
adaptation strategy for few-shot regression counting, adapting the model to new
visual categories at test time with a few exemplars. BMNet [26] and its exten-
sion, BMNet+ [26], focused on a similarity-aware framework with a learnable
bilinear similarity metric. CFOCNet+ [39] used a two-stream Resnet for dif-
ferent scales similarity calculation and aggregation. SAFECount [40] proposed
a learning block with a similarity comparison module and a feature enhance-
ment module, while LOCA [30] developed an object prototype extraction mod-
ule for low-shot counting problems. However, these methods often overlooked
background considerations in favor of foreground focus.
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Minimizing labor annotations is another focus in the class-agnostic object
counting task. Existing methods frequently depended on annotations such as
points and boxes during training and testing. To improve flexibility, several ap-
proaches aimed to eliminate human-annotated bounding boxes during testing,
achieving zero-shot counting. Among these, EF-CAC [24] counted all repeat-
ing objects through the region proposal network, while ZSC [35], CounTX [2]
and CLIP-Count [7] accepted an arbitrary object class description to predict
the object number. Concurrently, other methods were designed for training-free
object counting, capitalizing on the robustness and generalizability inherent in
large-scale foundational models. SAM [9] could perform zero-shot segmentation
and subsequently estimated the number of objects by tallying all the generated
masks. Based on it, SAM-Free [27] combined three distinct types of class-specific
priors to improve efficiency and accuracy. GroundingDINO [15] exceled in open-
set detection, capable of object counting via aggregation of detected bounding
boxes. Nevertheless, zero-shot models often necessitated extensive point annota-
tions during the training phase, which posed a challenge especially in complex
scenes. Training-free methods typically struggled in complex scenes or exhibited
constraints in their ability to generalize across multiple object categories.

3 Methodology

3.1 Network Architecture

Class-agnostic object counting aims to enumerate exemplar objects in a query
image with minimal support images. In this paper, we propose a novel training-
free method, an overview of which is illustrated in Figure 2.

Our method starts with segmenting exemplars in the query image, utilizing
SAM [9] as our backbone, to generate corresponding foreground masks. Fol-
lowing this, we introduce a novel context-aware similarity module considering
both foreground and background context to compute similarity maps. Then, the
prompt-aware counting module performs a dual prompt system on the weighted-
fusion similarity map to generate masks for target objects. Central to our method
is an iterative counting mechanism that compares the minimum bounding boxes
generated from the mask stacks with those from the prompt stacks. This pro-
cess is triggered upon detecting new bounding boxes until a set iteration cap is
reached. This iterative strategy establishes an approximation chain, enhancing
the model’s generalization capabilities to recognize a broad spectrum of objects.
Finally, we determine the number of objects by counting all masks in the mask
stacks, thus concluding our object-counting process.

3.2 Context-aware Similarity Module

The context-aware similarity module, as shown in Figure 3, generates a series
of foreground similarity maps and one background similarity map by processing
the image embedding and the foreground masks. We define the image embedding
FI and i-th foreground mask fmaski.
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Fig. 2: Overview of our TFCounter. TFCounter is a segmentation-based model de-
signed for training-free, class-agnostic object counting. It employs an iterative count-
ing mechanism and links three key modules: feature encoding, context-aware similarity
computation, and prompt-aware object counting.

First, the module extracts i-th foreground feature embedding FRi through
the Hadamard product, as indicated in Formula 1:

FRi = fmaski ◦ FI (1)

where ◦ denotes the Hadamard product, x and y represent spatial coordinates
in FI, and

FRi[x, y] = fmaski[x, y] ∗ FI[x, y] (2)

Then it computes the corresponding foreground similarity map fsmii by per-
forming a Euclidean dot product between FI and FRi, as illustrated in Formula
3:

fsimi = FRi ⊗ FI (3)

where ⊗ indicates the Euclidean dot product, u and v represent spatial coordi-
nates in FRi, K denotes the number of non-zero pixels of FRi, and

fsimi[x, y] =
1

K

∑
u,v

FI[x, y] ∗ FRi[u, v] (4)

According to this method, we can calculate all foreground similarity maps for
N prompt boxes, where pixel values represent the degree of correlation between
each pixel in the query image and the corresponding exemplar. Subsequently,
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Fig. 3: The context-aware similarity module utilizes the image embedding FI and
all foreground masks {fmask1, fmask2, ..., fmaskN} to generate both foreground and
background similarity maps. The prompt-aware counting module performs weighted
fusion on these similarity maps and operates a dual prompt system to produce target
masks.

the module calculates the average of all foreground similarity maps for the back-
ground analysis. We use the binarization threshold T1 to generate the back-
ground mask bmask. Finally, the background similarity map bsim is produced
in a manner analogous to the generation process of fsmii, thereby completing
the similarity assessment process of our model.

3.3 Prompt-aware Counting Module

The prompt-aware counting module, as indicated in Figure 3, combines all sim-
ilarity maps with the image embedding to produce masks for target objects.

First, the module creates a composite similarity map csim by weighting and
fusing whole foreground and background similarity maps, as shown in Formula
5

csim =
1

N

N∑
i=1

fsimi + λ× bsim (5)
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Fig. 4: Few annotated images from BIKE-1000. Dot and box annotations are indicated
in red and green, respectively. Most images feature an oblique perspective, leading to
bicycles with considerable variations in shapes, appearances, and sizes, even instances
of occlusion.

where λ is a key hyperparameter and N denotes the number of prompt boxes.
This fusion enhances the distinction between foreground and background regions
for more accurate segmentation. Then, we segment these regions on the compos-
ite similarity map with the threshold T2 and perform a dual prompt system to
generate two types of point prompts: (1) matrix point prompt, which is set to
1 within the foreground and 0 otherwise, processed in batches for efficiency; (2)
residual point prompt, which marks unmasked foreground areas as 1, targeting
small objects that the matrix prompt may miss. Finally, the prompt encoder
and the mask decoder transform these point prompts into target masks, which
are then compiled in the mask stacks for subsequent analysis.

4 BIKE-1000 Dataset

This paper utilizes exclusive data from Meituan, one of China’s leading shared
bicycle enterprises. In the bike-sharing and ebike-sharing industry, accurate bi-
cycle counting is a central requirement across multiple application scenarios,
including orderly operations management, inventory audits, and street silt re-
moval. To support these scenarios and advance the research and development
of more precise and efficient counting technologies, we have established a novel
object counting dataset named BIKE-1000. This dataset provides a large col-
lection of bicycle images accompanied by their count annotations, which aids in
improving bicycle management, enhancing operational efficiency, and ultimately
optimizing the user experience.
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Fig. 5: Number of images in several
ranges of object count.

Table 1: Comparison with popular ob-
ject counting datasets: "v" for verti-
cal perspective, "o" for oblique; "b" for
bounding box annotations, and "p" for
point.
Dataset CARPK FSC147 BIKE-1000

Year 2017 2021 2023

Images 1448 6135 1000

Categories 1 147 1

Instances 43 56 13

Perspective v v.o o

Annotation b.p b.p b.p

The BIKE-1000 dataset encompasses a collection of 1000 images, each fea-
turing distinctly visible shared bicycles situated within various scenes. These im-
ages were primarily captured by operators. A significant portion of the dataset is
characterized by photographs taken from an oblique perspective, which presents
the bicycles with considerable variations in shape, appearance, and size, as well
as instances of partial occlusion. Such attributes pose typical challenges in the
domain of object counting in computer vision. The annotation protocol for the
BIKE-1000 dataset adheres to the methodology used in FSC147 [25], compris-
ing (1) point annotation, where each countable bicycle seat is marked, and (2)
bounding box annotation, with three instances per image demarcated as exam-
ples. The dataset includes high-resolution imagery with bicycles ranging from
3 to 70 per image, averaging 13 objects. Note that shared bicycles consist of
numerous components, such as frames, handlebars, wheels, seats, etc., whose
appearance can vary significantly when viewed from different angles. Manually
counting over 70 bicycle seats in a single image proved difficult, especially in
images with oblique perspective. Therefore, we have limited our image selection
to those with fewer than 70 bicycle seats for the BIKE-1000 dataset. The visu-
alizations are displayed in Figure 4, while the statistical data and comparisons
with object count benchmarks are shown in Figure 5 and Table 1.

5 Experiments

5.1 Experimental Setup

Dataset. We evaluate TFCounter on two general object counting datasets,
FSC147 and CARPK, and further study its generalizability on the proposed
BIKE-1000. FSC147 contains 6135 images spanning 147 object categories, with
a test subset of 1190 images from 29 categories. CARPK includes 1448 images
documenting around 90,000 cars from a drone’s perspective, with 459 images
dedicated to testing. The BIKE-1000 dataset, with its complete set of 1000 im-
ages, serves to estimate our model’s performance in a novel domain. Metrics.
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Table 2: Quantitative comparison on FSC147 and CARPK.

FSC147 CARPK
Method Training Prompt

MAE RMSE MAE RMSE
GMN Yes box 26.52 124.57 — —

CFOCNet+ Yes box 22.10 112.71 — —
FamNet+ Yes box 22.08 99.54 28.84 44.47

Counting-DETR Yes box 16.79 123.56 — —
BMNet+ Yes box 14.62 91.83 10.44 13.77

SAFECount Yes box 14.32 85.54 16.66 24.08
SPDCN Yes box 13.51 96.80 18.15 21.61
CounTR Yes box 11.95 91.23 — —
LOCA Yes box 10.79 56.97 9.97 12.51

Zero-shot Object Counting Yes text 22.09 115.17 — —
CLIP-Count Yes text 17.78 106.62 11.96 16.61

CounTX Yes text 15.88 106.29 11.64 14.85
GroundingDINO No text 59.23 159.28 27.72 51.49

SAM No N.A. 42.48 137.50 16.97 20.57
SAM-Free No box 19.95 132.16 10.97 14.24

TFCounter(Ours) No box 18.56 130.59 9.71 12.44

To assess the accuracy of our method, we utilize Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) as metrics, both of which are estab-
lished standards for object counting tasks [17, 23]. These metrics are defined

as: MAE = 1
n

∑n
i=1 |ci − ĉi|; RMSE =

√
1
n

∑n
i=1(ci − ĉi)2, where n denotes

the number of test images, while ci and ĉi represent the actual and predicted
object counts, respectively. Implementation. In the weighted fusion process
of foreground and background similarity maps, we adjust λ to 0.5 for FSC147
and to 0.7 for CARPK and BIKE-1000. Moreover, to prevent small objects from
being omitted by excessive background fusion, λ is set to 0 when the foreground
regions are more than 50%.

5.2 State-of-the-art Comparison

We compare our model to competitive baselines: (1)GMN [16], (2)CFOCNet+
[39], (3)FamNet+ [25], (4)Counting-DETR [19], (5)BMNet+ [26], (6)SAFE-
Count [40], (7)SPDCN [12], (8)CounTR [13], (9)LOCA [30], (10)Zero-shot Ob-
ject Counting [35], (11)CLIP-Count [7], (12)CounTX [2], (13)GroundingDINO
[15], (14)SAM [9], (15)SAM-Free [27].

Quantitative Results on FSC147 and CARPK Table 2 provides a quanti-
tative comparison of various models on the FSC147 and CARPK datasets. The
top results from trained models with box prompts are highlighted in green, while
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Table 3: Quantitative comparison on BIKE-1000.

Method Training Prompt MAE RMSE
GroundingDINO No text 7.95 12.37

SAM-Free No box 7.43 10.07
TFCounter(Ours) No box 6.59 10.01

Fig. 6: Qualitative comparison on FSC147, CARPK, and BIKE-1000. The "prompt"
represents box prompts for SAM-Free and TFCounter. In the CARPK dataset, we
followed the approach of Ranjan et al. [25] by using 12 predefined examples from the
training set for cross-image counting. GroundingDINO employs FSC-147-D [2], "cars",
and "bike seat" as text prompts for the FSC147, CARPK, and BIKE-1000, respectively.

the best outcomes using text prompts are in blue. The training-free model achiev-
ing the first-rate performance is indicated in red. All trained models underwent
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extensive training over hundreds of epochs on the FSC147 dataset. Their perfor-
mance on CARPK demonstrates cross-dataset generalizability. Relatively, the
assessment of training-free models on both datasets reveals zero-shot generaliza-
tion capabilities. On the FSC147 dataset, TFCounter’s performance outperforms
that of three trained models with box prompts and another with text prompts.
Specifically, TFCounter exhibits an increase in MAE of only 7.77 compared to
the top-performing box-prompt model, LOCA, and a 2.68 increase compared to
the leading text-prompt model, CounTX. It should be noted that LOCA and
CounTX attain their results by utilizing thousands of training data and complex
training methodologies. Among all training-free models, our model indicates the
best performance. Compared to the present benchmark in training-free models,
SAM-Free, our model reduces MAE by 1.39, lowering it from 19.95 to 18.56.
Moreover, on the CARPK dataset, TFCounter attains state-of-the-art results,
underscoring the robust generalization capabilities of our model.

Quantitative Results on BIKE-1000 We introduce BIKE-1000, a novel
dataset with oblique perspective images of shared bicycles for object count-
ing task to assess the cross-domain generalization capabilities of various models.
In our evaluation of BIKE-1000, we benchmark the performance of Ground-
ingDINO, SAM-Free, and our newly proposed TFCounter. GroundingDINO rep-
resents the state-of-the-art in open-set object detection, capable of object count-
ing via aggregation of detected bounding boxes. Meanwhile, SAM-Free stands
as the leading model in the research landscape of training-free, class-agnostic
object counting. Table 3 showcases the quantitative evaluation outcomes for the
aforementioned models. TFCounter outperforms its counterparts, establishing a
new state-of-the-art in training-free counting methods and demonstrating out-
standing generalization performance on the novel BIKE-1000 dataset.

Qualitative Results Additionally, we present a comparative analysis of the vi-
sualization results for GroundingDINO, SAM-Free, and TFCounter. Figure 6 il-
lustrates the qualitative distinctions among the models on the FSC147, CARPK,
and BIKE-1000 datasets. GroundingDINO exhibits commendable performance
in counting objects of low density and demonstrates robust zero-shot gener-
alization capabilities across multi-class objects within diverse datasets. Nev-
ertheless, its efficacy diminishes when tasked with high-density object count-
ing or facing significant intra-class differences. In contrast, SAM-Free surpasses
GroundingDINO in high-density scenarios yet exhibits a propensity for false pos-
itives, mistaking non-target items that share a resemblance in shape or color.
This issue is particularly pronounced against messy backdrops. For instance,
in BIKE-1000’s test images, SAM-Free frequently misidentifies bike locks and
wheels—owing to their color similarity with bike seats—and handlebars due to
their resemblance to shape. Moreover, SAM-Free tends to fragment a single ob-
ject into multiple parts, a phenomenon conspicuously illustrated in the second
visualization from the left on the FSC147 dataset. Our proposed TFCounter no-
tably ameliorates the limitations above. It demonstrates superior performance
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Table 4: Analyzing the components of TFCounter.

Component FSC147 BIKE-1000
Background
Similarity

Multi-round
Counting

Residual Point
Prompt

MAE RMSE MAE RMSE

19.95 132.16 7.43 10.07√
20.85 132.38 10.55 14.60√
20.62 132.04 9.16 11.80√
21.41 131.94 22.32 25.74√ √
20.46 131.79 10.36 14.43√ √
18.50 130.92 6.48 10.40√ √
23.22 132.25 30.16 35.31√ √ √
18.56 130.59 6.59 10.01

Fig. 7: Influence of hyperparameter λ in weighted fusion process of the foreground and
background similarity maps.

in counting objects across both high-density and low-density scenarios. Despite
facing the challenging test images from BIKE-1000, TFCounter exhibits excel-
lent accuracy over SAM-Free by recalling fewer non-target objects and reducing
the omission due to significant intra-class differences. While the MAE metric
captures the absolute discrepancy between predicted counts and ground truth,
it may not fully encapsulate the nuanced improvements made by TFCounter.
However, these enhancements are evident in the visualization comparisons, such
as in the fourth visualization from the left of the BIKE-1000 dataset.

5.3 Ablation Studies and Analysis

Component Analysis To substantiate the efficacy of each component in TF-
Counter , we executed a series of ablation studies, the results of which are delin-
eated in Table 4. The first row of the table presents the SAM-Free, which offers
a well-designed counting module for the general class-agnostic counting frame-
work. The evaluation data presented in rows 2 to 4 of the table reveal that the
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isolated implementation of any single component—be it the Background Simi-
larity, Multi-round Counting, or Residual Point Prompt—results in diminished
performance. The assessments depicted in rows 5 to 7 further corroborate that
the binary combinations of these components are suboptimal, with the fusion
of Multi-round Counting and Residual Point Prompt being particularly ineffec-
tive. However, as demonstrated in row 8, the synergistic integration of all three
components yields pleasing outcomes. It can be attributed to the distinctive
functions of each component: the Background Similarity is tasked with filter-
ing out irrelevant masks to bolster accuracy, whereas the Multi-round Counting
and Residual Point Prompt are designed to broaden the recall scope, thereby
encapsulating a larger array of target objects. Optimal performance is realized
through the harmonious interplay of these components, as the exclusive use of
the Background Similarity may lead to the inadvertent exclusion of smaller ob-
jects, and reliance solely on Multi-round Counting and Residual Point Prompt
could result in the erroneous inclusion of non-target objects. Thus, the efficacy of
our approach is predicated on the collaborative operation of these components.

Hyperparameters Analysis Subsequently, we explored the influence of the
hyperparameter λ in the weighted fusion process of the foreground and back-
ground similarity maps. We experimented with two fusion methods: 1) the mean
fusion, denoted as "Mean", formulated as 1

N

∑N
i=1 fsimi +λ× bsim; and 2) the

maximum fusion, denoted as "Max", formulated as maxi(fsimi) + λ × bsim.
Figure 7 illustrates the impact of different λ values and fusion methods on the
performance of TFCounter on the BIKE-1000 dataset. The results indicate that
as λ increases, both MAE and RMSE decrease initially and then increase, with
only a slight difference in the optimal point (from 0.7 to 0.6). It suggests an
optimal ratio for the fusion process on the BIKE-1000 dataset, and fine-tuning
this ratio for each image might yield better accuracy, which is a potential direc-
tion for future research. Moreover, when λ is small, the "Mean" method incurs
a more significant mistake, whereas the reverse is for larger λ. A possible reason
is that the "Mean" method considers all exemplars, making it easier to recall
non-target objects when less background fusion; the "Max" method focuses only
on the most similar exemplar, resulting in more omission of small objects when
excessive background fusion. Overall, both methods exhibit limitations that em-
phasize the need for future work to more universal fusion strategies. In this
paper, the "Mean" method with λ = 0.7 is adopted for the BIKE-1000 dataset.

Density Analysis Finally, we compared three training-free methods: Ground-
ingDINO, SAM-Free, and TFCounter, in terms of their performance on test
images with various densities. Figure 8 showcases MAE on the FSC147 and
BIKE-1000 datasets, where the vertical axis is presented on a logarithmic scale
for better visualization. GroundingDINO performs optimally on low-density test
images, but its MAE increases exponentially with rising density. TFCounter
demonstrates superior accuracy in medium to low-density scenarios. Meanwhile,



14

Fig. 8: Performance in different density images.

SAM-Free reaches or slightly outperforms TFCounter in high-density test im-
ages. However, SAM-Free performs better in high-density test images partly due
to recalling more non-target objects rather than accurately counting all targets,
which unexpectedly brings the counting results closer to the true value. A typical
example of this can be seen in the fourth visualization from the left in Figure 6
of the BIKE-1000 dataset.

6 Limitations

The initial version of TFCounter presents several limitations. Computational
Efficiency. Our model achieves object counting through mask segmenting, multi-
round counting strategy, and residual point prompt, all of which result in an
increased processing time, particularly for high-density images. Future research
on more lightweight large-scale segmentation models may mitigate this limita-
tion. Segmentation Granularity. Our model utilizes a segmentation-based
approach for object counting by tallying the number of masks. However, when
objects comprise multiple parts with significant color or shape differences, such
as the red flesh and green calyx of a strawberry, the segmentation-based model
may encounter issues with double counting due to segmenting a single object into
multiple masks. One future solution direction is to explore large-scale foundation
models with adaptive segmentation granularity.

7 Conclusions

In this paper, we explore a training-free technique for processing downstream
tasks and applications in computer vision by integrating generalizable compo-
nents from large-scale foundation models into task-specific frameworks. Based on
it, we propose TFCounter, an innovative model capable of performing training-
free category-agnostic object counting tasks using visual prompts. The original-
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ity of TFCounter stems from three core designs: a multi-round counting strat-
egy, a dual prompt system, and a context-aware similarity module. The first
two contribute to broadening the recall scope, while the latter boosts accuracy
by incorporating background context. The development of TFCounter hopes to
excite further thinking about how to adapt large-scale foundation models well-
known for high generalizability to various downstream tasks and domain data,
simultaneously maintaining superior performance. Future works include innova-
tive visual prompts for more intuitive human-computer interactions and more
adaptive designs for the similarity module to enhance performance.
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